Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Res ; 257: 121700, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38705068

RESUMO

Sulfur-based denitrification is a promising technology in treatments of nitrate-contaminated wastewaters. However, due to weak bioavailability and electron-donating capability of elemental sulfur, its sulfur-to-nitrate ratio has long been low, limiting the support for dissimilatory nitrate reduction to ammonium (DNRA) process. Using a long-term sulfur-packed reactor, we demonstrate here for the first time that DNRA in sulfur-based system is not negligible, but rather contributes a remarkable 40.5 %-61.1 % of the total nitrate biotransformation for ammonium production. Through combination of kinetic experiments, electron flow analysis, 16S rRNA amplicon, and microbial network succession, we unveil a cryptic in-situ sulfur disproportionation (SDP) process which significantly facilitates DNRA via enhancing mass transfer and multiplying 86.7-210.9 % of bioavailable electrons. Metagenome assembly and single-copy gene phylogenetic analysis elucidate the abundant genomes, including uc_VadinHA17, PHOS-HE36, JALNZU01, Thiobacillus, and Rubrivivax, harboring complete genes for ammonification. Notably, a unique group of self-SDP-coupled DNRA microorganism was identified. This study unravels a previously concealed fate of DNRA, which highlights the tremendous potential for ammonium recovery and greenhouse gas mitigation. Discovery of a new coupling between nitrogen and sulfur cycles underscores great revision needs of sulfur-driven denitrification technology.

2.
J Hazard Mater ; 463: 132921, 2024 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-37944228

RESUMO

Microplastics have become one of the hot concerns of global marine pollution. In recent years, diversity and abiotic influence factors of plastisphere microbial communities were well documented, but our knowledge of their assembly mechanisms and co-occurrence patterns remains unclear, especially the effects of depth on them. Here, we collected microorganisms on microplastics to investigate how ocean depth affects on microbial diversity, community composition, assembly processes and co-occurrence patterns. Our results indicated that there were similar microbial richness and community compositions but microbial evenness and unique microbes were obviously different in different ocean layers. Our findings also demonstrated that deterministic processes played dominant roles in the assembly of the mesopelagic plastisphere microbial communities, while the bathypelagic microbial community assembly was mainly shaped by stochastic processes. In addition, the co-occurrence networks suggested that the relationships between microorganisms in the mesopelagic layer were more complex and stable than those in the bathypelagic layer. Simultaneously, we also found that Proteobacteria and Actinobacteriota were the most abundant keystones which played important roles in microbial co-occurrence networks at both layers. This study enhanced our understanding of microbial diversity, assembly mechanism, and co-occurrence pattern on plastisphere surfaces, and provided useful insights into microorganisms capable of degrading plastics and microbial remediation.


Assuntos
Microbiota , Plásticos , Microplásticos , Bactérias , Proteobactérias
3.
Microb Ecol ; 86(4): 3027-3042, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37792089

RESUMO

Deep ocean polymetallic nodules, rich in cobalt, nickel, and titanium which are commonly used in high-technology and biotechnology applications, are being eyed for green energy transition through deep-sea mining operations. Prokaryotic communities underneath polymetallic nodules could participate in deep-sea biogeochemical cycling, however, are not fully described. To address this gap, we collected sediment cores from Nazimov guyots, where polymetallic nodules exist, to explore the diversity and vertical distribution of prokaryotic communities. Our 16S rRNA amplicon sequencing data, quantitative PCR results, and phylogenetic beta diversity indices showed that prokaryotic diversity in the surficial layers (0-8 cm) was > 4-fold higher compared to deeper horizons (8-26 cm), while heterotrophs dominated in all sediment horizons. Proteobacteria was the most abundant taxon (32-82%) across all sediment depths, followed by Thaumarchaeota (4-37%), Firmicutes (2-18%), and Planctomycetes (1-6%). Depth was the key factor controlling prokaryotic distribution, while heavy metals (e.g., iron, copper, nickel, cobalt, zinc) can also influence significantly the downcore distribution of prokaryotic communities. Analyses of phylogenetic diversity showed that deterministic processes governing prokaryotic assembly in surficial layers, contrasting with stochastic influences in deep layers. This was further supported from the detection of a more complex prokaryotic co-occurrence network in the surficial layer which suggested more diverse prokaryotic communities existed in the surface vs. deeper sediments. This study expands current knowledge on the vertical distribution of benthic prokaryotic diversity in deep sea settings underneath polymetallic nodules, and the results reported might set a baseline for future mining decisions.


Assuntos
Bactérias , Manganês , Bactérias/genética , Sedimentos Geológicos/microbiologia , Níquel , Filogenia , RNA Ribossômico 16S/genética , Cobalto
4.
Mar Environ Res ; 190: 106082, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37429213

RESUMO

Revealing the ecological processes and environmental adaptation of abundant and rare archaea is a central, but poorly understood, topic in ecology. Here, abundant and rare archaeal diversity, community assembly processes and co-occurrence patterns were comparatively analyzed in Arctic marine sediments. Our findings revealed that the rare taxa exhibited significantly higher diversity compared to the abundant taxa. Additionally, the abundant taxa displayed stronger environmental adaptation than the rare taxa. The co-occurrence network analysis demonstrated that the rare taxa developed more interspecies interactions and modules in response to environmental disturbance. Furthermore, the community assembly of abundant and rare taxa in sediments was primarily controlled by stochastic and deterministic processes, respectively. These findings provide valuable insights into the archaeal community assembly processes and significantly contribute to a deeper understanding of the environmental adaptability of abundant and rare taxa in Arctic marine sediments.


Assuntos
Archaea , Sedimentos Geológicos , Archaea/genética , Regiões Árticas
5.
Soft Matter ; 19(4): 625-633, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36168911

RESUMO

Small water droplets or particles located at an oil meniscus typically climb the meniscus due to unbalanced capillary forces. Here, we introduce a size-dependent reversal of this meniscus-climbing behavior, where upon cooling of the underlying substrate, droplets of different sizes concurrently ascend and descend the meniscus. We show that microscopic Marangoni convection cells within the oil meniscus are responsible for this phenomenon. While dynamics of relatively larger water microdroplets are still dominated by unbalanced capillary forces and hence ascend the meniscus, smaller droplets are carried by the surface flow and consequently descend the meniscus. We further demonstrate that the magnitude and direction of the convection cells depend on the meniscus geometry and the substrate temperature and introduce a modified Marangoni number that well predicts their strength. Our findings provide a new approach to manipulating droplets on a liquid meniscus that could have applications in material self-assembly, biological sensing and testing, or phase change heat transfer.

6.
Langmuir ; 37(44): 12790-12801, 2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34699236

RESUMO

Lubricant-infused surfaces (LISs) can promote stable dropwise condensation and improve heat transfer rates due to a low nucleation free-energy barrier and high droplet mobility. Recent studies showed that oil menisci surrounding condensate microdroplets form distinct oil-rich and oil-poor regions. These topographical differences in the oil surface cause water microdroplets to rigorously self-propel long distances, continuously redistributing the oil film and potentially refreshing the surface for re-nucleation. However, the dynamic interplay between oil film redistribution, microdroplet self-propulsion, and droplet nucleation and growth is not yet understood. Using high-speed microscopy, we reveal that during water condensation on LISs, the smallest visible droplets (diameter: ∼1 µm, qualitatively representing nucleation) predominantly emerge in oil-poor regions due to a lower nucleation free-energy barrier. Considering the significant heat transfer performance of microdroplets (<10 µm) and transient characteristic of microdroplet movement, we compare the apparent nucleation rate density and water collection rate for LISs with oils of different viscosities and a solid hydrophobic surface at a wide range of subcooling temperatures. Generally, the lowest lubricant viscosity leads to the highest nucleation rate density. We characterize the length and frequency of microdroplet movement and attribute the nucleation enhancement primarily to higher droplet mobility and surface refreshing frequency. Interestingly and unexpectedly, hydrophobic surfaces outperform high-viscosity LISs at high subcooling temperatures but are generally inferior to any of the tested LISs at low temperature differences. To explain the observed nonlinearity between LISs and the solid hydrophobic surface, we introduce two dominant regimes that influence the condensation efficiency: mobility-limited and coalescence-limited. We compare these regimes based on droplet growth rates and water collection rates on the different surfaces. Our findings advance the understanding of dynamic water-lubricant interactions and provide new design rationales for choosing surfaces for enhanced dropwise condensation and water collection efficiencies.

7.
Environ Sci Pollut Res Int ; 28(29): 38466-38475, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33733407

RESUMO

How to recycle metals from the waste resources becomes a hotspot all around the world. Non-ferrous residues, which was produced by non-ferrous melting industry, and various of Cu and Co compounds exist in the residues in the form of CuxOy, CuxSy, CoxSy. In order to efficiently extract valuable metals from the non-ferrous residues, this study investigated the bioleaching behavior of Cu and Co from non-ferrous residues, using iron-oxidizing bacteria (IOB, Leptospirillum ferriphilum CS13) and sulfur-oxidizing bacteria (SOB, Acidithiobacillus caldus S2) by controlling the microbial composition, initial pH, and initial ferrous ion concentration. The results showed that IOB had a better performance on extracting Cu and Co than that of SOB, especially for Cu. Furthermore, 77.7 and 79.8% of Cu and Co were extracted under the optimal ratio of the initial number of IOB and SOB (1:1) after bioleaching, which was more than that when bioleaching by any one of these two kinds of bacteria. However, the changes of initial pH and ferrous ion concentration could not significantly enhance bioleaching performance. The results indicated that bioleaching had a good performance on recovering of metals from non-ferrous residues and excellent application prospect for the cleaner resource recycling.


Assuntos
Cobre , Ferro , Acidithiobacillus , Bactérias , Cobalto , Oxirredução , Enxofre
8.
J Environ Manage ; 285: 112133, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33607564

RESUMO

The recovery of precious metals from solid waste through bioleaching has become a research hotspot in recent years. Thus, in this study, different strategies, such as chemical sulfuric acid leaching and mixed consortium bioleaching, were adopted to extract copper from Copper-Containing Electroplating Sludge. The results showed that, compared to chemical leaching, bioleaching showed a much better performance. Indeed, copper bioleaching efficiency reached 94.3% on day 7 (21.1% higher than that of chemical leaching). The results also indicated that the process of bioleaching involved more mechanisms and reactions than that of chemical leaching. The SEM and EDX tests showed that the surface morphology of the sludge changed significantly after bioleaching, and that an insignificant amount of copper remained in the leached residues. Furthermore, the leached residues passed the characteristic leaching toxic test and thus can be considered as non-hazardous raw materials for the construction industry. Hence, adopting a mixed consortium leaching process to extract copper from Copper-Containing Electroplating Sludge will not only significantly reduce environmental pollution, but will also use metal resources more efficiently.


Assuntos
Galvanoplastia , Esgotos , Cobre , Poluição Ambiental , Metais
9.
RSC Adv ; 10(3): 1388-1399, 2020 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-35494665

RESUMO

Plant incineration ash is the final product from the remediation of multi-metal contaminated soils by the phytoextraction process. The content of heavy metals in plant ash was found to be higher than the regulatory criteria and it was thus classified as hazardous waste. So far, no eco-friendly and cost-effective technology has been developed for the management of this residue. Herein, a cleaner strategy of bioleaching combined with brine leaching of multi-metals from plant ash was developed. The bioleaching results indicated that 88.7% (Zn), 93.2% (Cd), 99.9% (Mn) and 13.8% (Pb) were achieved under optimum conditions of Fe(ii) concentration 6.0 g L-1, pH 1.8 and pulp density 15% (w/v). Subsequently, the introduction of brine leaching using 200 g L-1 NaCl significantly increased Pb recovery to 70.6% under conditions of 15% (w/v) pulp density, thereby ultimately achieving deep recovery of all metals. An investigation of the mechanism revealed that H+ attack and microorganisms were the dominant mechanism for bioleaching of Zn, Cd and Mn, and the bioleaching kinetics of Zn in ash were controlled by interface mass transfer and diffusion across the product layer. Risk assessment tests indicated that the leached residues could pass the TCLP test standard and be safely reused as nonhazardous materials. These findings demonstrated that the two-stage leaching strategy was feasible and promising for multi-metal removal from plant ash.

10.
Chemosphere ; 232: 345-355, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31158629

RESUMO

The semi-pilot scale bioleaching of electroplating sludge by the moderately thermophilic acidophilic consortium was carried out for the first time. During the microbial cultivation, Leptospirillum ferriphilum CS13, Acidithiobacillus caldus S2, and Sulfobacillus acidophilus CS5 could grow rapidly in a 300 L aeration packed reactor, in which the total suspended cell concentration could fluctuate around 3 × 108 cells/mL and the community structure remained relatively stable. During the bioleaching process, the microbial stock solution could effectively leach heavy metals from electroplating sludge in a stirred reactor within a few hours. Meanwhile, the effects of pH, temperature, the quantity of active culture, and liquid-solid ratio on the bioleaching behavior were also investigated. The optimal conditions for electroplating sludge bioleaching were pH 1.5, temperature 45 °C, bacterial liquid ratio 40%, liquid-solid ratio 4:1 L kg-1, and leaching time 5 h. The total removal rate of various heavy metals in electroplating sludge was over 99%. The bioleaching residue was successfully passed the TCLP test, and the total contents of heavy metals in the residue were also well below the regulatory criteria. In addition, the XRD analysis of the bioleaching residue was also confirmed that the moderately thermophilic consortium bioleaching provided a cleaner process than chemical leaching on the removal of the residual fraction metals, which was feasible and attractive for industrial treatment of electroplating sludge.


Assuntos
Galvanoplastia , Eliminação de Resíduos/métodos , Acidithiobacillus , Bactérias , Reatores Biológicos , Concentração de Íons de Hidrogênio , Metais Pesados/análise , Projetos Piloto , Temperatura
11.
Soft Matter ; 15(24): 4808-4817, 2019 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-31089647

RESUMO

Water vapor condensation is common in nature and widely used in industrial applications, including water harvesting, power generation, and desalination. As compared to traditional filmwise condensation, dropwise condensation on lubricant-infused surfaces (LIS) can lead to an order-of-magnitude increase in heat transfer rates. Small droplets (D ≤ 100 µm) account for nearly 85% of the total heat transfer and droplet sweeping plays a crucial role in clearing nucleation sites, allowing for frequent re-nucleation. Here, we focus on the dynamic interplay of microdroplets with the thin lubricant film during water vapor condensation on LIS. Coupling high-speed imaging, optical microscopy, and interferometry, we show that the initially uniform lubricant film re-distributes during condensation. Governed by lubricant height gradients, microdroplets as small as 2 µm in diameter undergo rigorous and gravity-independent self-propulsion, travelling distances multiples of their diameters at velocities up to 1100 µm s-1. Although macroscopically the movement appears to be random, we show that on a microscopic level capillary attraction due to asymmetrical lubricant menisci causes this gravity-independent droplet motion. Based on a lateral force balance analysis, we quantitatively find that the sliding velocity initially increases during movement, but decreases sharply at shorter inter-droplet spacing. The maximum sliding velocity is inversely proportional to the oil viscosity and is strongly dependent of the droplet size, which is in excellent agreement with the experimental observations. This novel and non-traditional droplet movement is expected to significantly enhance the sweeping efficiency during dropwise condensation, leading to higher nucleation and heat transfer rates.

12.
Artigo em Inglês | MEDLINE | ID: mdl-12142908

RESUMO

The cDNA encoding the human copper, zinc-superoxide dismutase(Cu, Zn-SOD) was amplified from the human liver by RT-PCR and sequenced. The cloned human Cu, Zn-SOD cDNA was ligated into expression vector pET-22b(+) under T7 promotor. After 3 h induction with 1 mmol/L IPTG, human Cu, Zn-SOD was highly expressed in E.coli BL21(DE3). The expression product was up to 30% of the total protein of the bacteria in soluble form, which had specific SOD activity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...